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ABSTRACT

The development of & radio frequency telemeter capable of being iaunched ‘
from hypervelocity guns at accelerations up to 250,000 "g" and subsequently
measuring such parameters as heat transfer, damping coefficients, infra-
red radiation, etc., is described. The need for such a telemeter is
discussed and its feasibility is demonstrated. The results of component
testing, circuit design and prototype firings are presented.
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INTRODUCTION

In the past several decades, the ballistic range has become a promi-
nent tocl in aerodynamics and aerospace physics research. The aeroballistic
range consiste essentially of a launching device, usually a gun or a gun
system, and an instrumented flight path through a chamber in which the
pressure and temperature of the envirommental gases can be controlled. A
pressure-temperature controlled range can be used to simulate upper atmosphere
conditions or to produce an environment with gases other than air. The
Ballistlc Research Laboratories have several such ranges which have been
described in detall by Bra.unl and Rogerea. Conventional, single-stage,
propellant guns, as well as multi-stage, light gas guns are available.

The customary instrumentation for these free flight ranges consists of
spark shadowgraph stations, photocell triggering and velocity measurement
apparatus, high speed framing and smear cameras, schlieren stations and
optical interfercmetry. With such instrumentation, one can make accurate
measurements of drag, aerodynamic forces and moments, electron demsities
and shock wave parameters. These instruments will not, however, give
direct measurements of such dynamic variables as stagnation temperature,
energy transfer and damping coefficients, and other physical quantities
associated with flight at high velocities. Some years ago, it was realized
that an active and direct in-flight measuring apparatus would be valuable
and in some cases the only technique for obtaining data from a high velocity
model moving through s controlled range. It was seen that an active radio
telemeter would fill these requirements. Radio telemetry has been widely
used in industrial processes and in rocket and missile control systems.

But, radio telemetry in such applications has been used in what might de
called a relatively mild test, one certainly not involving the severe shocks
and accelerations experienced in gun lsunchings. Therefore, the question of
vhether electronic circuits can survive gun launchings and continue to
function thereafter was the most serious and immediate problem. World War II
experience with VI fuzes gave some confidence that a 10,000 "g" - 3 millisecond
launch impulse could readily be survived. Advances in solid state technology
gave rise to the hope that & 100,000 "g" - 3 millisecond impulse could also

be weathered. Later experience showed that with proper packeging a 250,000

"g" - 5 millisecond impulse was not even an upper limit.



A contract was let with the Harry Diamond Laboratories (then called the
Diamond Ordnance Fuze Laboratories) to develop such a high "g" telemeter.
At the same time, similar programs were in progress at the Cenadian Armament
Research and Development Establishment (CARDE) under Bull3 and at the
Arnold Engineering and Development Center (AEDC) under Kingeryh and others.
(A bibliography of work done in the field of high "g" radio telemetry has
been complled by Clemenss.) At the outset of the BRL-HDL program, little
was known sbout the effects of extremely high accelerations on electronic
components, sensors, circuits and potting materials. First, components were
evaluated both by thecretical studies and by test firings from guns. The
results of this program have been reported in part6. After & number of
sultable components and materials were found, entire circuits and modules
were developed and tested in guns. Finally, after some years of effort,
complete telémetering systems were constructed and flown. A substantial
number of these systems were tested during the past two years while constant
improvements and refinements were being made. At present, the initial
development progrem is considered at an end. Work progresses on sensor

development, improved accuracy, multiple channel operation and increased
power.

DISCUSSION OF THE PROBLEM

The firet step in the development of the high "g" telemeter was to
determine which dynamic variables .could be measured by an active radio
telemeter. It was thought that a temperature measurement would be the most
straight-forwerd and simple to verify. Base pressure measurements in the
region behind the projectile were alsoc considered but rellable sensors were
not immediately available. The measurement of accelerations normal to the
flight axie was quite attractive but required the building of a rugged
solid state accelerometer. Infra-red radiation measurements were considered
a possibility, but were dependent on the durability of devices such as
lead sulfide cells. So the development proceeded initially in the directlon
of temperature telemeters.

Guns which are available as test launchers vary in size from 20 to 105mm
and are capable of producing velocities up to 20,000 fps with vehicles
weighing from 5 to 500 grams. Some of these guns, such as the ZTmm, the
90mm T208, and the 105mm T210, were conventional propellant guns. Others,
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such as the 20mm, ‘the 0.50 caliber, and the 240-176-T6mm, were light-gas
guns. The 105mm gun has & maximum operating breech pressure of 60,000 psi
and for a total sabot-projectile weight of four pounds, accelerations up to
200,000 "g" for four milliseconds could be expected in the barrel.

It was apparent that only solid state electronic devices would survive
the 200,000 "g" environment and that they would have to be potted internally.
Capacitors and resistors would have to be of monolithic construction and as
small as possible. Batteries for the power supply would have to be solid
core cells. The entire finished circuit would require potting and the final
projectlle would have to be a s0lid mass of nearly uniform denslty - including
the circuit elements. To minimize the chance of fallure, initial circuits
would be made very simple and would probably not be of optimu design.

The transmitted power had to be greaf enough to enable transmission over a
range of 250 ft., since, for horizontal firings through the range, antennas
could be placed along the flight path.

Sensors would be designed on the basis of ruggedness and simplicity.
Thus, for example, mechanical accelerometers were not considered. Surface
temperature sensors would be thin-film, resistance elements. Plezoelectric
crystals would be used for accelerometers. Variable capacitance gages
might be useful for pressure measurements.

Finally, the ground receiving station had to be implemented. Dipoles or
long wire transmission lines were considered for antennas. The possibility
of using the range chamber itself as an antenna was studied. In order to
avoid the problems associated with amplitude error in an AM telemetering
system, the telemeter would be operated in FM and, therefore, FM recelvers
would have to be coupled to the antennas. Wideband receivers were suggested
since there would probabily be unpredictable shifts in carrier frequency
due to the high accelerations at launch. The signals received by *the FM
. receivers would be recorded and magnetic tape was thought to be most suitable
for the task. The tape would be played back into an oscillograph recorder
for a graphic record of the data. This record could then be further
reduced by an optical camparator or a telereader., Or, the data could be fed
from the recording tape directly into a subcarrier discriminator for direct
analog output of data.



MECHANICAL TECHNIQUE

A variety of components such as transistors, capacitors, resistors and
batteries was obtained after careful evaluation for inherent ruggedness of
design. These components were encapsulated in cylindrical proof slugs made
of aluminum and fired at both the BERL Transonic Range and the HDL Range.
Early firings at Transonic Range were done with a 3Tmm gun, and the slugs
were recovered in a cylindrical tank filled with polystyrene beads. At
HDL, the potted slugs were launched from an air gun and allowed to impact on
a steel plate. The impact gave a high "g" pulse whose amplitude depended
on impact velocity and the shape of the slug. The pulse duration was short,
of the order of less than one millisecond. Since air gun tests could not
provide a 200,000 "g" pulse, they were eventually discontinued. The results
of similar tests done at AEDC7 and at CARDE were taken into consideration
in the selection of components suitable for high "g" work.

Transistors were tested in the above fashion both with and without
internal potting. It was found that most transistors required internal
potting in order to survive more than 40,000 "g". For a long time internal
potting of transistors was an arduous task and the yield of good potted
transistors was low. This was due in great part to the degradation that
occurred as soon as the transistor protective casing was removed. A technique
for rapidly coating the transistor Junction was developed to inhibit
degradation. A coating compound consisting of a mixture of Dow Corning
Sylgard 81 dissolved in triple-distilled chloroform was applied to the
transistor Junction as soon as the casing had been broached. The mixture
was injected by means of a hypodermic syringe into the first possible
opening made. The rest of the casing could then be opened at leisure. As
soon as the top of the casing had been lifted off, more of the Sylgard-
chloroform solution was added. The excess was shaken off and the solution
left on the junction quickly evaporated, leaving behind & thin coating of
Sylgard on the junction. Now the transistor was ready for further potting.
First attempts at £illing the case with a hard epoxy such as Epon 815 showed
that shrinkage occurred during the curing process. This shrinkage created
voids and pockets between the potting material and the side walls of the
case. In addition, i{nternal stresses vers built up in the potting compound
which would often ruin the transistor. This difficulty was substantially
relieved by combining an inert filler such as powdered silica in a one-to-one
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ratio with the epoxy resin. Whereas previously there had been a failure
rate, due to stresses, of about six in ten transistors potted, now the
fallure rate dropped to one in ten. The curing egent for Epon 815 is DETA
(di-ethylenetriamine) and is used in proportions of ten parts per hundred
of resin. 2N502 transistors potted by this technique showed remarkable
insensitivity to high accelerations and had a shelf life of more than one
year.

Cnce transistors had been potted and suitable passive elements had been
selected, entire circuits such as oscillators and amplifiers were constructed.
At first, printed circuits were tried but were found to fail under high
accelerations. In the final design, cani;onents were aligned on riberglass
boards in such a way as to economize on space, reduce lead lengths and put
least sensitive axes along the direction of maximum acceleration. Welding of
electrical connections was attempted but the results were not as good as
with simple solder joints. (Either the welding process produced a greater
number of poor connections than did soldering, or the welded connections
themselves do not make good high "g" joints.) The most satisfactory wiring
technique was a straight point-to-point one using no insulation. It was
felt that insulation tended to permit some freedom of motion for the lead
wires which might cause a break during the high acceleration.

Wherever long leads could not be avoided, such as between the surface
detector and the circuit, these leads were zigzagged to provide some slack.

Complete projectiles were assembled and the projectile bodies potted
with Epon 815. It was soon found that a solid Epon 815 plastic by itself
tended to be too brittle for gun lsunching. The brittle quality of the Epon
mix was reduced substantially by adding & liquid polymer. Thiockol LP=3 was
chosen and used in & 60-40 resin to polymer ratio.. Not only did the LP-3
make the plastic more resilient but it also inhibited the formaticn of internal
stresses. The proportion of DETA catalyst was kept at six parts per hundred
of mix. The nature of resin-polymer systems has been investigated by
Thiokol Corp. and data are available in the manufacturer's private ntmturo.9
The curing process for Epon 815 is exothermic and temperatures as high as 300°F
have been observed in 500 gram batches. The temperature can be kept low by
potting in stages, & small amount (say 50 - 100 grems) at a time. The
excessive temperatures produced in potting large quantities at a time could
dsnage electronic components and 4o produce bubbles and cavities in the final

lastic.,
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Epon 815 LP-3 plastic will burn, and heat shields in the form of steel wind-
screens had to be provided for the telemetering vehicles. Some projectiles were
of such a shape that windscreems could not be used. For these, a fiberglass shell
was developed. The fiberglass was woven on a mandrel to the approximate shape of
the projectile while being continuously wiped with epoxy resin according to s
Naval Ordnance Laboratory (NOL) process. The resulting projectile would not burn
even at velocitles approaching Mach 10.

DEVELOPMENT OF THE TELEMETER

As soon as an adequate number of high "g" components had been found and tested,
work began on circuit development and the fabrication of prototypes. The initial
effort was put into the development of a temperature sensing telemeter followed by
the development of acceleration sensing telemeters, vertical probe telemeters and
infra-red sensing telemeters.

Temperature Telemeter

Sensor. The sensor was of primary importance in the development of the tempera-
ture telemeter, since the circuitry for the telemeter would certainly be dictated
by the nature of the sensing device. Bead thermistors, thermocouples and thin
films were thought to be the most rugged types of temperature gage. Since heat
transfer calculations can be considerably simplified by assuming the surface to be
planar and uniform, any gage which would appreciably protrude from or disturd the
surface would certainly introduce complications in the calculation. This
immediately ruled out the use of bead thermistors and semiconductive thermoelectric
devices. Thermocouple gages suffered the disadvantage of producing low level
(millivolts) signals which would require a stage of amplification. An additional
stage of amplification would unnecessarily complicate the circuit. So, thin film
geges vere selected for temperature sensors. The thin film gage has the advantage
of a large resistance change for a modest tqnpmt'ure change. The gage is usually
less than one micron thick and can be considered as pu't_ of the surface.

First sttempts to comstruct thin film gages were based on the work of Viaal'®

A substrate vas made by casting Corning No. 7050 glass in the shape of a bead around s
parallel pair of Kovar vwires. The cast bead was oval-shaped, about one inch long and
about 3/8 inches thick. The beed was cut in half along & plane normal to the vires,
ylelding two substrates per bead. The flat surface was then fire-polished and set
aside to age. A zig-sag film of Platinum Bright Paint (Hanovia 05-X) vas applied
wvith a straight pen to the fire-polished surface between the two Kovar terminals.
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The entire bead was baked in an oven raised slowly to 600°C over a one hour

period until the Platinum solution had decomposed, leaving a bright, thin film of
Platinum metal bonded to the glass. The bond derives its strength from the

fact that the glass substrate has been brought to the softening point during baking.
The bead was then removed from the oven and allowed to cool in air. The resist-
ance of the films becames stable after a week of aging and has a value somewhere
between 1000 and 2000 ohme., Fig. 1 shows a sample of such a film. Fig. 2
illustretes a typical temperature-resistance calibration curve for this gage.

Unfortunately, a year's experience with telemeters using this particular
gage showed that the‘gage conslstently falled in flight. There was no conclusive
way to determine the cause of failure but stresses in the glass bead were suspected.
A new substrate made of Corning Pyroceram No. 9606 was tried. Pyroceram is a
dense refractory material used in the making of cooking ware. Although Pyroceram
was difficult to pclish, a thin film could be applied to it after some mechanical
polishing. There seemed to be fewer failures with the Pyroceram backed gage than
with the glass substrate.

Sensors made of thin platinum films require a rigid non-conductor as a sub-
strate. Another technique for applying thin films which may be used on metallic
oxides is the cathodic sputtering of films in vacuum. Excellent bonds can be
obtained between film and substrate by this process.n’ 12 Cathodic sputtering
has been used to make satisfactory high "g" temperature sensors by AEII:.D The
quality of the bond depends on the high temperatures produced by ion bombardment
during the sputtering process.

Circuitry. Fig. 3 shows the circuit diagram of a complete temperature tele-
meter consisting of sub~carrier oscillator, in-flight calibrator and carrier
oscillator. The sub-carrier oscillator is a free-running multivibrator with
capacitive coupling feedback. In one of the coupling loops, the capacitor is in
perallel with the sensor. Thus, the frequency of ‘Op'erat:l.on of the sub-carrier
is dependent on the resistance of the sensor. The nominal frequency of the sub-
carrier oscillator is 30kc with a 1000 ohm sensor in the circuit. An inorease of
1000 oms in the sensor produces a frequency change of about 30kec. A typical
resistance versus frequency curve for the SCO is shown in Fig. 4. After a number
of firings with this circuit, it was observed that permanent frequency shifts
renging from 1000 to 3000 cps occurred. A number of projectiles without sensors
were fired to see vhether this shift was more or less constant from ome circuit
to the next. It was found that the frequency change was unpredictadble. Some
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device which would furnish a reference frequency in flight would have to be
included in the circuit. This would give an indication of how great a shift

of SCO frequency occurred on any particular shot. An in-flight calibrator was
designed which would permit periodic sampling of first the sensor resistance

and then some internal and presumably unchanging impedance called the reference
frequency. It was assumed that if a shift of SCO frequency occurred in flight, it
could be measured by comparing the reference frequency during flight with the
reference frequency before flight. The percent change in reference frequency could
then be applied to the data as a correction factor, provided the changes took
place over the linear portion of the calibration curve. The in-flight calibrator
is another free-running multivibrator with a duty cycle of two milliseconds and is
coupled to a transistor made to act as a swtich. This electronic switch is
connected directly across the sensor and is biased near cutoff. A complete cycle
of operation would be as follows: During the first half cycle of the free-
running calibrator, the base of the transistor switch is held below cutoff and the
transistor does not conduct. It becomes, in effect, an open circuit. In this
condition, the SCO sees effectively just the sensor in the circuit. On the next
half cycle of the calibrator, the base of the switching transistor is raised
above cutoff and the transistor conducts. This condition effectively short circuits
the sensor and the SCO sees only a short circult where previously it had seen the
sensor. The frequency of the SCO in this condition is called the reference
frequency. Fig. 5 shows a typical oscilloscope trace of both the date and the
reference frequency of the SCO. The in-flight calibrator has been very valuable
not only in the reduction of data, but also in the analysis of sensor failure.

The nominal frequency of the radio frequency oscillator is about TOme and
was chosen at that value since at the time it was at the upper limit of cpera-
tion of most transistors. The subcarrier sigoal is fed into the base of a
2N502 transistor by capacitive coupling and the signal frequency modulates the
Tome carrier. The carrier oscillator is not crystal controlled since it was found
that crystals could not be internally potted. This has been the most successful .
circuit to date. The radiated power is about 200 microwatts.

Mechanical Construction. In the actual construction of the telemeter, the -
layout and orientation of parts is momf. Fig 6 shows the components of the
telemeter and Fig. 7 shovs a completely assembled and potted projectile. The
projectile shape chosen for temperature telemetering was & reentry vehicle, the GE
type 3.1 design. This projectile is & high drag shape and is shown in Pig. 8
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with its sabot. This model measured about three inches in diameter and had ample
space for the electroric circuitry. Although space was not a major problem in
this telemeter, every precatuion was taken to keep the electronics as small as
possible, both from the point of view of minimizing the effect of acceleration
and for the experience in miniaturization which would prove useful in tutilre
designs. The antenna was designed to be a spiral helix in order to gét as close
as possible to the conical rear surface of the bro,jectile. The windscreen was
made of nickel plated steel.

Acceleration Sensing Telemeter

Sensor. The results of the CARDE high "g" program'’17 vere studied and this
experience was used in the consideration of acceleration sensors. The Columbia
Research Corporation Model 512 accelerometer was chosen. The Model 512 is a
piezoelectric crystal mounted in a stainless steel casing. An acceleration
imposed on the sensor results in a signal from the crystal proportional to the
magnitude of the acceleration. The piezo crystal is a high impedance device and
is customarily used to measure varying acceleration. The crystal will measure
constant e.ccelération when coupled to the input of a very high impedance circuit
such as a cathode follower. Because the accelerations to be measured by this
crystal would be changing with time and an a.c. signal would be produced, a
moderately high impedance circuit was developed. Millivolt signals were expected
over aAfrequency band from 5 - 100 cps. The sensor is mounted with its sensitive
axis in a plane normal to the trajectory of the projectile and at some distance
removed from the center of gravity. In such a location and orientation, the -
sensor will furnish in-flight data on the frequency and amplitude of oscillations
of the shell about its center of gravity and on the damping of such oscillations.

Circuitxy. The first circuit developed consisted simply of a Derlington
connection to act as an impedance matching device between the crystal and the low
impedance TOmc oscillator. The oscillator was frequency modulated directly by
the varying output of the crystal without recourse to a subcarrier oscillator.
Fig. 9 shows this circuit schematically and it is based on the original CARDE
circuit except for different values and transistors. The current circuit employs
& subcarrier oscillator and is shown in Fig. 10. The input here is alsoc &
Darlington connection formed by transistors Ql and Q- Q’ is a pre-amplifier to
boost the low level signal from the crystal to an amplitude vhich can be used to
operate Q“. Qu is used as a voltage controlled impedance to frequency modulate the
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subcarrier oscillator QS and Q.. Q7 is the TOme carrier oscillator. The input
impedance of the Darlington connection is nominally 5 megohms and the pre-
amplifier is set for an input swing of O - 10 millivolts.

Mechanical Construction. An experimental reentry vehicle (RVX) shape,
consisting of a cone-cylinder-flare configuration, was chosen for the acceleration
sensing telemeter, and is shown in Fig. 11. Ballast had to be added to the nose
section in order to maintain a forward center of gravity. A first attempt to
construct this shell involved the use of epoxy resin but the resulting shell
burned freely and broke up at high accelerations. The final construction tech-
nique used woven fiberglass and provided a strong vehicle unaffected by the high
temperatures produced in flight.

Vertical Probe Telemeter

Both BRL end McGill University have been using conventional or slightly
modified artillery at high angles of elevation in order to launch research probes
into the upper at.mosphere.l6 ERL has fired a number of such probes in the last
two yea.rs.l7 Altitudes exceeding 250,000 feet have been achieved. After the high
altitude capability of the BRL guns had been demonstrated, it became necessary to
instrument the vertical probe vehicles to obtain data on the upper atmosphere.
The high "g" program was expanded to include the develooment of a high power
transmitter with associated circuitry to transmit data from high altitudes beck
to ground receiving stations. In the vertical probe guns, much lower "g" loads
could be anticipated than in horizontal high velocity firings. Nominally, the
BRL 5-inch gun would produce no more than 60,000 "g" for a muzzle velocity
of about 5500 feet per second. The McGill 16-inch gun at Barbados has even lower
"g" loads of approximately 10,000 "g".

Sensors. At the outset of the vertical probe program, no semsors for the

measurement of upper atmosphere parameters were avilable. It was decided that
interior temperatures of the shell would be useful data and would provide the
program with a measurement objective. Later in the program, attention was given
to the development of sensors to measure skin temperatures, free air temperatures,
electron densities, radiation and other measureables of the atmosphere. In order
to monitor interior shell temperatures, a bead thermistor made by Gulton Industries
(Type 41CBl) was chosen. The thermistor had a nominal resistance of 10,000 ohms.
It was placed in the instrument compartment of the shell and provided data which
could be used to determine whether the instrument compartment ever reached

significantly high temperatures.



Circultry. Work was done on circuit development both at Harry Diamond
Laboratories (HDL) and at Airborne Instruments Laboretory (AIL) under separate
contracts. The initial HDL circuit is shown in Fig. 12. The carrier oscillator
developed for the temperature telemeter was improved and a power amplifier was
added to give increased power output. The subcarrier was made from a uni-junction
transistor which acts as an audio oscillator at & nominal value of 30kc. This
circuit is described by Stutzke.le The power amplifier was capable of 150
milliwatts into a 50 ohm load at 7Omc. Due to poor antemns efficiency, only
about 20 millivatts of radiated power (with respect to d standard dipole) was
achieved. In order to boost the radiated power, a second power amplifier was
added and the resulting circuit is shown in Fig. 13. This circuit was capable of
delivering 500 milliwatts into a 50 om load and the radiated power increased to
100 milliwatts. A number of the second variety circuits were built and tested
for radiated power. The variation in power output from one measurement to the
next was so marked that this scheme of simply adding power amplifiers was.
abandoned in fé.vor of’using the higher power transistors which had then become
available. Work is currently in process of a 250mc transmitter capable of -
delivering 2 watts into a 50 ohm load. Fig. lha shows the components of the
telemeter before and after potting. Fig. lib shows the complete probe.

Antenna. It was decided to use the body of the shell as an antenna. The
nose cone is separated from the body by a fiberglass washer, thus creating an
asymmetrical dipoie. The output of the TOmc power amplifier is developed across
the gap created by the washer. A loading coil is placed in the antenna coupling
line in order to match impedances hetween amplifier and antenna. A tuning slug
was included in the coil to provide a capability for fine tuning the impedance
match. The radiation pattern was essentially dipole. Despite the use of a loading
coil, the efficiency remained poor. This type of antenna is problematical for
gun launched projectiles since small changes in the dimensions of the gap or changes
in the dielectric filling the gap seridusly affect the power transmitted. Such
changes are not unreasonable when gun launch accelerations are considered. The
small dimensions of the present vertical probe body (2 1/2 inches in dismeter)
preclude the use of other types of antenna at TOme.

The Ground Station

A ground receiving and recording station was set up close by the bhorisontal
range. The station is shown schematically in Fig. 15, and consists of a series of
antennas feeding into FM receivers which in turn are coupled to & sagnetic tape
recorder. A long wire transmission line antenna was tried with the horizontal
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firings, but did not prove as satisfactory as a series of dipoles spaced along the
_flight path. Nems Clarkc type 1501A FM receivers were used to pick up the signal
from the antennas and demodulate the FM carrier. The receiver video outputs were
connected to an Ampex FR100, direct record, magnetic tape machine and the FM
subcarrier signal was recorded directly on tape. In addition to the data frequency,
a standard frequency from a signal generator, a time zero pulse‘a.nd a timing signal
were recorded on separate channels. The standard frequency was needed for date
reduction and to obviate the need for knowing the tape wow and flutter accurately.
The time zero pulse vas obtained from the gun firing circuit aund gave an absolute
reference point in time. The 1501A receiver had a 300kc bandwidth purposely chosen
80 large because of uncertainties in the frequency stability of the TOme oscillator.
More recently, some Nems Clarke model 1037A receivers have been obtained for

the vertical probe ground station and these receivers have excellent sensitivity

in addition to variable bandwidth. During a firing, the Ampex tape recorder is

run at 60 ips and later played back at 1 7/8 ips into an oscillograph recorder.

The final graphic recording contains the data frequency, the standard frequency

and the time zero and timing channels. ' Data is reduced by comparing the data
frequency with the standard rrgquency.

The ground equipment for monitoring vertical shots was essentially the same
as that for horizontal firings. High gain Yagl antennas were used in the TOmc
band and helices will be used at 250mc.

RESULTS

Temperature Telemeter

A number of firings were accomplished during the development program of the
past three years. Each model fired was a prototype, and singular rather than
statistical data are availsble. After each prototype firings, results were
sualyzed and improvements included in subsequent models.

\~

The first projectiles fired contained subcarrier oscillators and radio
frequency oscillators, without sensors on board. These tests consisted of simple
observations of the in-flight subcarrier frequency to determine circuit behavior
and stability. After these initial tests, sensors were included and dats was
sough*. Tatle I gives a sumary of the firing program. Table II provides a
commentary on Table I, indicating probable causes of failure. A total of tweaty-
nine telemetering projectiles vere delivered by HDL during the program. Five of
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these became inoperative on the shelf, probably because of battery or transistor
failure. These five were early models and the shelf life has been extended in
later models. Twenty-four models were fired in the Transonic Range. Of these,
twenty carrier oscillators survived and signals were picked up by the FM receivers.
Nineteen subcarrier oscillators functioned and the signals were recorded on tape.
Accelerstions in the gun ranged from 167,000 to 288,000 "g" with velocities from
5800 to 8300 feet per second. In five cases, no signals were recorded and of
these, four models hit the protective blast shield in front of the range. The
remaining failure occurred after the model had been turned on for an hour and a
half in subzero weather. (It was Jammed in the gun.) Of the fifteen projectiles
with sensors on board, only two gave reasonable data. Nine of the sensors broke
on launch and the four other circuits drifted considmbly during flight. The
final shot of the program (SC 19) gave excellent temperature data. The results
of this shot are shown in Fig. 16 in the form of a temperature-time history.
Unfortunately, the channel containing the first down range antenna was excessively
noisy and early flight data could not be obtained. Thus, the data record begins
at T + 80 millisec. The data points are compared with & curve obtained from

an empirical relation of AVC0.19 A discussion of the theoretical considerations
leading to the use of the AVCO empirical relation for heat transfer is presented
in the Appendix. The two curves, experimental and quasi-theoretical, agree quite
well in slope and are withir 15% in amplitude.

Fig. 17 shows a smear photograph of a telemetering projectile in flight.
The sabot has separated and the fragments are travelihs symmetrically some distance
behind the model. .At higher velocities, the sabot fragments will bwurn, as seen
in Fig. 18. Good sabot separation helps insure that the model will enter the range
and not hit the blast-protecting shield in front of the range. At extremely high
velocities, the steel windscreen itself would become hot enough to glow.

Fig. 19 shows a subcarrier signal from one of the early prototypes in flight.
Both pre-shot and m-flight‘ signals are shown. As seen in the figure, the early
model subcarrier signals suffered substantial distortion after launch. By contrast,
Fig. 20 shows the subcarrier signal from a later model during flight. The signal
shown here is free from distortion and poise., Finally, Fig. 21 shows an oscillo-
gram of the in-flight calibrator in operation during a shot. Two distinct
frequencies of the subcarrier are ohserved. .
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It has been pointed out that the 3.1 vehicle is a high drag shape. Often
after a firing it was possible to walk downrange and pick up the telemeter which
was lying on the ground. In many cases, it was still transmitting.

Acceleration Sensing Telemeter

The RVX skhape chosen for acceleration telemetry was built up as an all
plastic model in order to transmit rrom' it. A number of dummy models were
fabricated from Epoxy/LP-B mix and flown in the range. These projectiles in-
variably broke up on leaving the gun. The next approach was to construct several
different types of fiberglass bodies., Only the roven fiberglass mentioned earlier
survived. Several of these roven fiberglass rounds were tried out of the
240-176-T76mm light gas gun and they performed satisfactorily. In the meantime,
a number of active circuits were developed and flown with no results. Work still
continues on the circuit development. Table III summarizes the results of
firing acceleration sensing telemeters.

Fig. 22 is a photograph of the breakup of an all Epoxy/LP-} dummy model.
The ballast slug can be clearly seen flying by itself. Fig. 23 shows the flights
of three different types of fibergiass models.

Vertical Probe Telemetry

The results of vertical firings of the same telemetry probe have been
reported by Marks and Boyer.l7 The only successful firing of this HDL package
has been in & horizontal test through the Transonic Range. The vertical firings
involved telemeters of substantially lower output than desired and no signals
were picked up X

CONCLUSIONS

It has been demonstra.ted that functional electronic circuits can be built
and hardened to survive the high accelerations experienced in hypervelocity gun
launches. Dats has been obtained from high velocity firings. Improvements in
stability, power and accuracy are well within the cepabilities of the state of
the art. The area requiring greatest effort is sensor development. With slight

E 2
In January 1964, 250mc telemetery units built by HDL and Computing Devices of

Canada (CDC) were fired from the HARP-McGill 16 inch gun. Two of the CDC units
were successfully launched and transmitted some signals. In Marhc 1964 HDL
built 250mc telemeters were successfully launched from the HARP 5 inch gun and’
transmitted good signals.
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improvements in circuitry and with improved sensore, it is felt that the high
"g" telemeter will become a valuable instrument for use in reentry experiments
in the BRL hypervelocity ranges.
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Quasi-theoretical calculations of expected in-flight nose tip temperatures
were made in order to determine whether the temperature data obtained from
projectile SC 19 were reasonable or not. These calculations proceeded from

certain simplifying assumptione regarding the sensor substrate and a suitable
solution of the heat equation at the boundary.

The glass bead substrate was considered as a homogeneous semi-infinite solid
with coefficient of thermal conductivity k. The heat conduction process is then, .
one dimensional and the heat equation is written

32T(xt)
M(x,t) = k d 1
(x ) -a-x-z (1)

where x is the distance into the solid from the front surface, T(x,t) is the

temperature along x at any time t, and k = K where K is the thermal diffusivity
and C 1s the specific heat. ¢

The general solution of the heat equation for steady state conditions is

2
-X
] ,Fb 1" 3 x
'1‘ (x,t) = "0 |2 T e -xerfc(aJ_kt> , (2)

vwhere ¢° is a constant representing the heat traneferred per unit surface ares
and unit time, and where erfc is the complementary error function defined by

") 2
ertc (M) --2-‘/;. eV gy.
g

In the case of a body moving with variable velocity, the heat input is mo
longer constant (¢° § constant) and the above solution (2) is no longer exact.
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Let us approximate the case of varying heat input with a heat inpﬁt' vhich is
piecewlise constant over short enough time intervals to be a reasonable
approximation of the true input function.

¢

|

Then, the complete solution to the heat equation will be a superposition of solu-
tions obtained from successive different constant heat inputs. Let us examine
the details of this approximation. Define the initial temperature for the solid
as 'I.‘o and define a function Tl for the interval O < t < t, so that

1
Tl (x)o) - TO . (3)
For a semi-infinite sol'd
lim T, (x,t) = T, » (%)
X =)

or, the temperature of the solid at great distances from the surface is the
initisl temperature for all times.
Write that

arl(x’t)
B =k —g—
which states that the heat flux per unit area and time during the interval

Octc tl i8 constant at the free surface of the solid.
Thus, for x = o

(5)

X =0

p
T, (o) m2y2 Eur (6)
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Consider now the next interval of time tl <tcg ta. Define a function T (x,t)
so that -

k %'(x:t)

x-o-¢o+¢l'cl- (7)

'y j

t, '

The new function T (x,t) will in general be different from T (x,t) and takes into
account the heat input history. This new function must also decay to To at
large x:

lim T (x,t) = T, . (8)
X 00
Now, define
Tw (T +T) +Ty (9)
where
Tl = T; (x,t) (10)
T, = T, (x, t-t)) .
Then,
o, (x,t)
IM(x,t) 1M 3 ]
k -k + %= T, (x,t-t.)
& X=0 & X=0 &:.2, Y lxwo
or, by comparison with (7)
M, (x,t-%.)
2% ¥% - (11)
cx ceo B
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Define

(a)

. (12)
(v) '1'2(0,0) = Tl ’
(e) lim Ta(x, t-tl) =T, .
X p®
Then,
p
1l
To(0, t-t)) = 2 E‘ﬁ N
and El'2 is also a solution of the heat equation at the boundary x = O.
Hence
T= '1‘1 + 'l.'2 + To
is indeed a solution of (1).
Generalizing, we write
n .
.1. _z 1 (13)
i,
i=0
and n n-l (14)
1l
cn - ¢1 " ¢1 + ¢n
im0 iso
or n-1l
H
$p=Cy- z g .
imo
Thus,

2 e
Ta E.EZ by ot o
’ nm=O .



and, since

n=-1
g =c - z )
=0
have
g, =8,
gp=¢, -8
Bp=Cp-fy-f =Cy-0Cp
¢n =C -C_,.
Finally,

T--&Z (€,Cr) FFon (25)

becomes the formula for computing the boundary (nose tip) temperature at any time
t. If K and k are known for the particular substrate material, only § need be
specified to perform the calculation. An empirical formula for ¢ at the stag-
nation point of a sphere was obtained by R. W. Detra and H. Hidalgo of AVCO'?
and was applied to this calculation:

oo G ) v "

nose radius of a sphere, ft.
in flight velocity, ft./sec.

where

< W
n s

Pe = mass density of the free stream air
Pgy ™ MASS density of air at sea level
B’ = total enthalpy

hv = enthalpy of the nose wall

l\' = initial enthalpy of the nose wall
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Since the nose tip is flat and not spherical, an effective nose radius, Reﬁ"
was used. Reﬂ was taken from an article by J. C. Boiason and H. A. Curtiss
of Avco?'o which accounts for the variation in bluntness from a sphere. For
this nose tip, R ., = 0.845. Por our calculation P ™ Pg s 804 if an ideal

gas was assumed,

$ [Rozz = 865 <-‘-T>"l5 e (a7

300

To begin the calculation, 1t was assumed that T = T initially. ¢° was

then calculated in (17) and used in (15) to g’ e T* oégg the initial time interval
t-t,. This T* was then used in (17) as T, to give a new ¢l for the interval
ty-t). ¢° and ¢l were then used to compute & new T* for t,-t,. The calculation

then proceeded in similar fashion through the entire flight history of the
shot.
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TABLE II

(1) The model Jammed while being loaded into the gun. After an hour and a
half in freezing weather, it was finally fired but did not function. Tests
have shown that batteries become inoperative below uo°1r.

(2) Only the shell primer functioned and generated sufficient gun chamber
pressure to launch the model 340 feet into “he range. The model was recovered and
fired again. ’

(3) The second firing of the No. 3E round.
(4) The SCO signal was noisy and distorted during flight.

(5) Substantial drift of SCO frequency during flight. More than can be
accounted for by temperature sensor changes alone.

(6) Bad launch from the gun. Model hit the blast-protecting shield in fromt
of the range.

(7) Sensor open-circuited in flight.

(8) This model had an in-flight calibrator on board.
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TABLE III

Round Type Velocity Acceleration Electronics Remarks
(fps) ("g")

6004 Epoxy Type A * 161,000 - Failed

6005 Epoxy Type A » 92,000 - Failed

6075 Epoxy Type B * 170,000 - Failed

6077 Epoxy Type B * 153,000 - Failed

6099 Fiberglass B 8000 161,000 - Survived

6100 Fiberglass C 8200 160,000 - Survived

6101 TFiberglass A 8200 158,000 - Failed

6166 Fiberglass C 7400 143,000 - Survived

6167 Fiberglass C 8000 203,000 - Survived

6225 TFiberglass C 8000 183,000 Yes Hit blast shield

6226 Fiberglass C 7600 172,000 Yes Hit blast shield

6302 Fiberglass C 6850 135,000 Yes No signal

4-19 Fiberglass A 6600 - - Falled

4-21 Fiberglass B 6400 e - Failed

422 Fiberglass C 6250 * - Survived

Velocity could not be obtained since the projectile broke up on launch.

#* Thege models were fired from the 240-176-76mn Jiéht gas gun. No chamber
pressure data were available and "g" loads could not be computed.
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Fig. 5. The lower trace shows data and
reference frequency with the sensor
at ambient conditions. The upper
trace shows the change of frequenc
produced by a change in the sensor.
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Fig. 14 a. (Top) Sub-assemblies of the
vertical probe before and after
potting. b. (Bottom) Vertical
probe projectile
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